1.Divisor scalar multiplication is the key operation in hyperelliptic curve cryptosystem.
1.除子标量乘是超椭圆曲线密码体制中的关键运算。
2.According to the theory of scalar diffraction, first, the equipollence of spatial distribution of the plane-wave interferential field and parallel projective sine grating is discussed.
2.据标量射理论,论了两平面波干涉场的空间分布与平行投影正弦光栅的等价性。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
1.It turns out that scalars also share this coordinate invariance property.
事实证明,标量也具有标不变性。机翻
2.We know how to multiply by a scalar.
我们知道如何乘以一个标量。机翻
3.When you multiply it by a scalar, or you're not changing its direction.
当你把它乘以一个标量,或者你没有改变它的方向时。机翻
4.And now let's begin the unit 1 review in earnest with vectors and scalars.
现在让我们从向量和标量开始认真复习第一单元。机翻
5.And Bobby, please give me some examples of scalars in physics.
鲍比, 请给我举一些学中标量的子。机翻
6.Like if, you know, let's go back to our kind of second grade world of just scalars.
就像,你知道的,让我们回到我们那只有标量的二年级世界。机翻
7.The scalar scaled up the vector. That might make sense.
标量放大矢量, 也许是有道的。机翻
8.Remember how I said that linear algebra revolves around vector edition and scalar multiplication?
还记得我说过线性代数围绕着向量编辑和标量乘法吗?
9.Or it might make an intuition of where that word scalar came from.
或者它可能会直觉地知道" 标量" 个词来自哪里。机翻
10.The only variable which is the same in both directions is change in time because change in time is a scalar.
唯一在两个方向上相同的变量是时间的变化,因为时间的变化是一个标量。机翻
11.The scalar, when you multiply it, it scales up a vector.
标量, 当你乘以它时, 它会放大一个向量。机翻
12.This is considered to be a scalar quantity.
被认为是一个标量量。机翻
13.The way you'll often hear this described is that linear transformations preserve the operations of vector edition and scalar multiplication.
您经常听到的描述是 线性变换保留了向量编辑和标量乘法的操作。
14.When we multiply it times some scalar factor.
当我们将它乘以某个标量因子时。机翻
15.You often think of this as being broken up into a real or " scalar" part, and then a 3d imaginary part.
您通常认为它被分解为实部或“标量” 部分,然后是 3d 虚部。机翻
16.Examples of scalars are time, distance, mass, speed, volume, density, work, energy, rotational inertia, and that's all I can think of.
标量的子有时间、距离、质量、速度、体积、密度、功、能量、动惯量,些就是我能想到的。机翻
17.Or even better, what vector, if I take any arbitrary scalar-- can represent any other vector on that line?
或者更好的是,如果我采用任何任意标量,那么哪个向量可以表示该行上的任何其他向量?机翻
18.The distance between you and a bench, and the volume and temperature of the beverage in your cup are all described by scalars.
你和长凳之间的距离,以及你杯子里饮料的体积和温度,都是用标量来描述的。机翻
19.So what happens if we take t, so some scalar, times our vector, times the vectors b minus a?
那么,如果我们取 t, 即一些标量, 乘以我们的向量,乘以向量 b 减去 a, 会发生什么呢?机翻
20.But we just did it the first way the last time because I wanted to go from my basic definitions of scalar multiplication.
但是我们上次只是用第一方法来做,因为我想从我对标量乘法的基本定义开始。机翻
关注我们的微信
下载手机客户端
划词翻译
详细解释