These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许我们形式化反定义: 反是欧几里得空间对合等距同构,它不动点集合是余维度为 1 仿子空间。
These observations allow one to formalize the definition of reflection: a reflection is an involutive isometry of an Euclidean space whose set of fixed points is an affine subspace of codimension 1.
这些观察允许我们形式化反定义: 反是欧几里得空间对合等距同构,它不动点集合是余维度为 1 仿子空间。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件观点;若发现问题,欢迎向我们指正。